
WLAN Toolbox™
Getting Started Guide

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

WLAN Toolbox™ Getting Started Guide
© COPYRIGHT 2015–2020 by MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
October 2015 Online only New for Version 1.0 (Release 2015b)
March 2016 Online only Revised for Version 1.1 (Release 2016a)
September 2016 Online only Revised for Version 1.2 (Release 2016b)
March 2017 Online only Revised for Version 1.3 (Release 2017a)
September 2017 Online only Revised for Version 1.4 (Release 2017b)
March 2018 Online only Revised for Version 1.5 (Release 2018a)
September 2018 Online only Revised for Version 2.0 (Release 2018b)
March 2019 Online only Revised for Version 2.1 (Release 2019a)
September 2019 Online only Revised for Version 2.2 (Release 2019b)
March 2020 Online only Revised for Version 3.0 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Introduction
1

WLAN Toolbox Product Description . 1-2

Tutorials
2

Create Configuration Objects . 2-2
Create HE MU Configuration Object . 2-2
Create Single User HE Configuration Object . 2-3
Create DMG Configuration Object . 2-5
Create S1G Configuration Object . 2-6
Create VHT Configuration Object . 2-8
Create HT Configuration Object . 2-10
Create Non-HT Configuration Object . 2-12

Waveform Generation . 2-14
Generate WLAN Waveforms . 2-16
Waveforms of Individual PPDU Fields . 2-24

Generate and Parse WLAN MAC Frames . 2-26

WLAN Channel Models . 2-28

Packet Recovery . 2-38
VHT Packet Recovery . 2-38
HT Packet Recovery . 2-42
Non-HT Packet Recovery . 2-45

About WLAN
3

What Is WLAN? . 3-2
Network Architecture . 3-2
WLAN Protocol Stack . 3-3
WLAN Message Exchange . 3-4
Physical Layer Evolution . 3-5

WLAN Radio Frequency Channels . 3-9

iii

Contents

Acknowledgments . 3-11

iv Contents

Introduction

1

WLAN Toolbox Product Description
Simulate, analyze, and test WLAN communications systems

WLAN Toolbox provides standards-compliant functions for the design, simulation, analysis, and
testing of wireless LAN communications systems. It includes configurable physical layer waveforms
for IEEE® 802.11ax/ac/ad/ah and 802.11b/a/g/n/j/p standards. It also provides transmitter, channel
modeling, and receiver operations, including channel coding (BCC and LDPC), modulation (OFDM,
DSSS, and CCK), spatial stream mapping, channel models (TGay, TGax, TGac, TGah, and TGn), and
MIMO receivers.

The toolbox provides reference designs to help you perform baseband link-level simulations and
multi-node system-level simulations. You can generate and parse common MAC frames. You can also
perform signal measurements such as channel power, spectrum mask, and occupied bandwidth, and
create test benches for the end-to-end simulation of WLAN communications links.

You can study the effects of RF designs and interference on system performance. Using WLAN
Toolbox with RF instruments or hardware support packages, you can connect your transmitter and
receiver models to radio devices and verify your designs via over-the-air transmission and reception.

1 Introduction

1-2

Tutorials

• “Create Configuration Objects” on page 2-2
• “Waveform Generation” on page 2-14
• “Generate and Parse WLAN MAC Frames” on page 2-26
• “WLAN Channel Models” on page 2-28
• “Packet Recovery” on page 2-38

2

Create Configuration Objects
WLAN Toolbox uses value objects to organize properties required for generation of IEEE 802.11™
b/a/g/n/j/p/ac/ah/ad/ax waveforms and to recover signal data from such waveforms. After you create
the various configuration objects described here, you can use them to generate waveforms.

Create HE MU Configuration Object
This example shows how to create HE MU configuration objects. It also shows how to change the
default property settings by using dot notation or by overriding the default settings by using
Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create an HE MU configuration object with the AllocationIndex set to 0 and view the default
settings.

cfgHEMU = wlanHEMUConfig(0)

cfgHEMU =
 wlanHEMUConfig with properties:

 RU: {1x9 cell}
 User: {1x9 cell}
 NumTransmitAntennas: 1
 STBC: 0
 GuardInterval: 3.2000
 HELTFType: 4
 SIGBMCS: 0
 SIGBDCM: 0
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0

 Read-only properties:
 ChannelBandwidth: 'CBW20'
 AllocationIndex: 0

Modify the defaults to specify four transmit antennas.

cfgHEMU.NumTransmitAntennas = 4

cfgHEMU =
 wlanHEMUConfig with properties:

 RU: {1x9 cell}
 User: {1x9 cell}
 NumTransmitAntennas: 4
 STBC: 0
 GuardInterval: 3.2000
 HELTFType: 4
 SIGBMCS: 0
 SIGBDCM: 0

2 Tutorials

2-2

 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0

 Read-only properties:
 ChannelBandwidth: 'CBW20'
 AllocationIndex: 0

Create Object and Override Default Property Values

Create an HE MU configuration object with AllocationIndex set to 192. Use Name,Value pairs to
set the spatial reuse to 3.

cfgHEMU = wlanHEMUConfig(192,'SpatialReuse',3)

cfgHEMU =
 wlanHEMUConfig with properties:

 RU: {[1x1 wlanHEMURU]}
 User: {[1x1 wlanHEMUUser]}
 NumTransmitAntennas: 1
 STBC: 0
 GuardInterval: 3.2000
 HELTFType: 4
 SIGBCompression: 1
 SIGBMCS: 0
 SIGBDCM: 0
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 3
 TXOPDuration: 127
 HighDoppler: 0

 Read-only properties:
 ChannelBandwidth: 'CBW20'
 AllocationIndex: 192

Create Single User HE Configuration Object
This example shows how to create single user HE configuration objects. It also shows how to change
the default property settings by using dot notation or by overriding the default settings by using
Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a single user HE configuration object and view the default settings.

hesu = wlanHESUConfig

hesu =
 wlanHESUConfig with properties:

 ChannelBandwidth: 'CBW20'

 Create Configuration Objects

2-3

 ExtendedRange: 0
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 PreHESpatialMapping: 0
 STBC: 0
 MCS: 0
 DCM: 0
 ChannelCoding: 'LDPC'
 APEPLength: 100
 GuardInterval: 3.2000
 HELTFType: 4
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0
 NominalPacketPadding: 0

Modify the defaults to specify an four transmit antennas.

hesu.NumTransmitAntennas = 4

hesu =
 wlanHESUConfig with properties:

 ChannelBandwidth: 'CBW20'
 ExtendedRange: 0
 NumTransmitAntennas: 4
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 PreHESpatialMapping: 0
 STBC: 0
 MCS: 0
 DCM: 0
 ChannelCoding: 'LDPC'
 APEPLength: 100
 GuardInterval: 3.2000
 HELTFType: 4
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0
 NominalPacketPadding: 0

Create Object and Override Default Property Values

Create a single user HE configuration object. Use Name,Value pairs to set the modulation and
coding scheme to 9 and to enable space-time block coding.

hesu2 = wlanHESUConfig('MCS',9,'STBC',true)

hesu2 =
 wlanHESUConfig with properties:

 ChannelBandwidth: 'CBW20'

2 Tutorials

2-4

 ExtendedRange: 0
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 PreHESpatialMapping: 0
 STBC: 1
 MCS: 9
 DCM: 0
 ChannelCoding: 'LDPC'
 APEPLength: 100
 GuardInterval: 3.2000
 HELTFType: 4
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0
 NominalPacketPadding: 0

Create DMG Configuration Object
This example shows how to create DMG configuration objects. It also shows how to change the
default property settings by using dot notation or by overriding the default settings by using
Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a DMG configuration object and view the default settings. By default, the configuration object
creates properties to model the DMG control PHY.

dmg = wlanDMGConfig

dmg =
 wlanDMGConfig with properties:

 MCS: '0'
 TrainingLength: 0
 PSDULength: 1000
 ScramblerInitialization: 2
 Turnaround: 0

Model the SC PHY by modifying the defaults to specify an MCS of 5.

dmg.MCS = 5

dmg =
 wlanDMGConfig with properties:

 MCS: 5
 TrainingLength: 0
 PSDULength: 1000
 ScramblerInitialization: 2
 AggregatedMPDU: 0
 LastRSSI: 0
 Turnaround: 0

 Create Configuration Objects

2-5

For the various configurations, different sets of configuration fields apply and are visible. By changing
the MCS setting from 0 to 5, we see that the configured object includes the AggregationMPDU and
LastRSSI fields.

Create Object and Override Default Property Values

Create a DMG configuration object for OFDM PHY. Use Name,Value pairs to set the MCS to 14 and
specify four training fields.

dmg2 = wlanDMGConfig('MCS',14,'TrainingLength',4)

dmg2 =
 wlanDMGConfig with properties:

 MCS: 14
 TrainingLength: 4
 PacketType: 'TRN-R'
 BeamTrackingRequest: 0
 TonePairingType: 'Static'
 PSDULength: 1000
 ScramblerInitialization: 2
 AggregatedMPDU: 0
 LastRSSI: 0
 Turnaround: 0

Create S1G Configuration Object
This example shows how to create S1G configuration objects. It also shows how to change the default
property settings by using dot notation or by overriding the default settings by using Name,Value
pairs when creating the object.

Create Object and Then Modify Properties

Create a S1G configuration object and view the default settings.

s1g = wlanS1GConfig

s1g =
 wlanS1GConfig with properties:

 ChannelBandwidth: 'CBW2'
 Preamble: 'Short'
 NumUsers: 1
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 0
 APEPLength: 256
 GuardInterval: 'Long'
 PartialAID: 37
 UplinkIndication: 0
 Color: 0
 TravelingPilots: 0
 ResponseIndication: 'None'
 RecommendSmoothing: 1

2 Tutorials

2-6

 Read-only properties:
 ChannelCoding: 'BCC'
 PSDULength: 258

Modify the defaults to specify an 8 MHz channel bandwidth, three transmit antennas, and three
space-time streams.

s1g.ChannelBandwidth = 'CBW8';
s1g.NumTransmitAntennas = 3;
s1g.NumSpaceTimeStreams = 3

s1g =
 wlanS1GConfig with properties:

 ChannelBandwidth: 'CBW8'
 Preamble: 'Short'
 NumUsers: 1
 NumTransmitAntennas: 3
 NumSpaceTimeStreams: 3
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 0
 APEPLength: 256
 GuardInterval: 'Long'
 PartialAID: 37
 UplinkIndication: 0
 Color: 0
 TravelingPilots: 0
 ResponseIndication: 'None'
 RecommendSmoothing: 1

 Read-only properties:
 ChannelCoding: 'BCC'
 PSDULength: 261

Create Object and Override Default Property Values

Create a S1G configuration object. Use Name,Value pairs to set the MCS to 5 and to specify two
transmit antennas.

s1g2 = wlanS1GConfig('MCS',5,'NumTransmitAntennas',2)

s1g2 =
 wlanS1GConfig with properties:

 ChannelBandwidth: 'CBW2'
 Preamble: 'Short'
 NumUsers: 1
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 5
 APEPLength: 256
 GuardInterval: 'Long'

 Create Configuration Objects

2-7

 PartialAID: 37
 UplinkIndication: 0
 Color: 0
 TravelingPilots: 0
 ResponseIndication: 'None'
 RecommendSmoothing: 1

 Read-only properties:
 ChannelCoding: 'BCC'
 PSDULength: 258

As currently configured, this object is not a valid S1G configuration. Validation of the object occurs
when it is the input to a calling function. When spatial mapping is 'Direct', the number of space-
time streams must equal the number of transmit antennas. Changing the number of space time
streams to match the number of transmit antennas is one option to make the configuration of the
object valid.

s1g2.NumSpaceTimeStreams = 2

s1g2 =
 wlanS1GConfig with properties:

 ChannelBandwidth: 'CBW2'
 Preamble: 'Short'
 NumUsers: 1
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 2
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 5
 APEPLength: 256
 GuardInterval: 'Long'
 PartialAID: 37
 UplinkIndication: 0
 Color: 0
 TravelingPilots: 0
 ResponseIndication: 'None'
 RecommendSmoothing: 1

 Read-only properties:
 ChannelCoding: 'BCC'
 PSDULength: 258

Create VHT Configuration Object
This example shows how to create VHT configuration objects. It also shows how to change the default
property settings by using dot notation or by overriding the default settings by using Name,Value
pairs when creating the object.

Create Object and Then Modify Properties

Create a VHT configuration object and view the default settings.

vht = wlanVHTConfig

2 Tutorials

2-8

vht =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'
 NumUsers: 1
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 0
 ChannelCoding: 'BCC'
 APEPLength: 1024
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275

 Read-only properties:
 PSDULength: 1035

Modify the defaults to specify a 160 MHz channel bandwidth, two transmit antennas, and two space-
time streams.

vht.ChannelBandwidth = 'CBW160';
vht.NumTransmitAntennas = 2;
vht.NumSpaceTimeStreams = 2

vht =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW160'
 NumUsers: 1
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 2
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 0
 ChannelCoding: 'BCC'
 APEPLength: 1024
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275

 Read-only properties:
 PSDULength: 1050

Create Object and Override Default Property Values

Create a VHT configuration object. Use Name,Value pairs to set the MCS to 7 and to specify two
transmit antennas.

vht2 = wlanVHTConfig('MCS',7,'NumTransmitAntennas',2)

vht2 =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'

 Create Configuration Objects

2-9

 NumUsers: 1
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 7
 ChannelCoding: 'BCC'
 APEPLength: 1024
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275

 Read-only properties:
 PSDULength: 1167

As currently configured, this object is not a valid VHT configuration. Validation of the object occurs
when it is the input to a calling function. When spatial mapping is Direct, the number of space-time
streams must equal the number of transmit antennas. Changing the number of space time streams to
match the number of transmit antennas is one option to make the configuration of the object valid.

vht2.NumSpaceTimeStreams = 2

vht2 =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'
 NumUsers: 1
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 2
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 7
 ChannelCoding: 'BCC'
 APEPLength: 1024
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275

 Read-only properties:
 PSDULength: 1166

Create HT Configuration Object
This example shows how to create HT configuration objects. It also shows how to change the default
property settings by using dot notation or by overriding the default settings by using Name,Value
pairs when creating the object.

Create Object and Then Modify Properties

Create an HT configuration object and view the default settings.

ht = wlanHTConfig

ht =
 wlanHTConfig with properties:

2 Tutorials

2-10

 ChannelBandwidth: 'CBW20'
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 MCS: 0
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'
 PSDULength: 1024
 AggregatedMPDU: 0
 RecommendSmoothing: 1

Modify the defaults to specify three transmit antennas and two space-time streams.

ht.NumTransmitAntennas = 3;
ht.NumSpaceTimeStreams = 2

ht =
 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'
 NumTransmitAntennas: 3
 NumSpaceTimeStreams: 2
 NumExtensionStreams: 0
 SpatialMapping: 'Direct'
 MCS: 0
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'
 PSDULength: 1024
 AggregatedMPDU: 0
 RecommendSmoothing: 1

As the settings of the object are modified, the set of properties that apply for the current
configuration are shown. When the number of transmit antennas is more than the number of space-
time streams, the number of extension streams property applies and is shown. Also, as currently
configured, this object is not a valid HT configuration because the default 'Direct' spatial mapping
requires the number of space-time streams to equal the number of transmit antennas. Validation of
the object occurs when it is input to a calling function.

Create Object and Override Default Property Values

Create an HT configuration object. Use Name,Value pairs to define a sounding packet by specifying
PSDULength = 0, and set the number of transmit antennas and space-time streams to 3.

ht2 = wlanHTConfig('PSDULength',0,'NumTransmitAntennas',3,'NumSpaceTimeStreams',3)

ht2 =
 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'
 NumTransmitAntennas: 3
 NumSpaceTimeStreams: 3
 SpatialMapping: 'Direct'
 MCS: 0
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'

 Create Configuration Objects

2-11

 PSDULength: 0
 AggregatedMPDU: 0
 RecommendSmoothing: 1

Create Non-HT Configuration Object
This example shows how to create non-HT configuration objects. It also shows how to change the
default property settings by using dot notation or by overriding the default settings by using
Name,Value pairs when creating the object.

Create Object and Then Modify Properties

Create a non-HT configuration object and view the default settings.

nonHT = wlanNonHTConfig

nonHT =
 wlanNonHTConfig with properties:

 Modulation: 'OFDM'
 ChannelBandwidth: 'CBW20'
 MCS: 0
 PSDULength: 1000
 NumTransmitAntennas: 1

Modify the defaults to specify four transmit antennas and to set the MCS to 3.

nonHT.NumTransmitAntennas = 4;
nonHT.MCS = 3

nonHT =
 wlanNonHTConfig with properties:

 Modulation: 'OFDM'
 ChannelBandwidth: 'CBW20'
 MCS: 3
 PSDULength: 1000
 NumTransmitAntennas: 4

Create Object and Override Default Property Values

Create a non-HT configuration object. Use a Name,Value pair change the modulation scheme to
DSSS.

nonHT2 = wlanNonHTConfig('Modulation','DSSS')

nonHT2 =
 wlanNonHTConfig with properties:

 Modulation: 'DSSS'
 DataRate: '1Mbps'
 LockedClocks: 1
 PSDULength: 1000

2 Tutorials

2-12

For the DSSS modulation scheme, a different set of properties apply and are shown for the non-HT
configuration object.

See Also
Objects
wlanDMGConfig | wlanHEMUConfig | wlanHERecoveryConfig | wlanHESUConfig |
wlanHTConfig | wlanNonHTConfig | wlanS1GConfig | wlanVHTConfig

Related Examples
• “Waveform Generation” on page 2-14
• “What Is WLAN?” on page 3-2

 Create Configuration Objects

2-13

Waveform Generation
After you create the necessary configuration objects described in “Create Configuration Objects” on
page 2-2, you can use the objects to generate the desired WLAN format waveform.

The IEEE 802.111 standards define a physical layer conformance procedure (PLCP) protocol data unit
(PPDU) as the transmission unit at the physical layer. For a detailed description of the PPDU field
structures for each transmission format, see “WLAN PPDU Structure”.

HE Format PPDU

In HE, there are four transmission modes supported: single user, single user extended range, trigger-
based, and multi-user.

DMG Format PPDU

In DMG, there are three physical layer (PHY) modulation schemes supported: control, single carrier,
and OFDM.

1. IEEE Std 802.11-2016 Adapted and reprinted with permission from IEEE. Copyright IEEE 2016. All rights reserved.

2 Tutorials

2-14

S1G Format PPDU

In S1G, there are three transmission modes: S1G_LONG, S1G_SHORT, and S1G_1M. Each
transmission mode has a specific PPDU preamble structure.

VHT, HT, and non-HT Format PPDUs

The VHT, HT, and non-HT PPDU formats consist of preamble and data fields.

 Waveform Generation

2-15

Use WLAN Toolbox functions to generate a full PPDU waveform or individual PPDU field waveforms.

Generate a full PPDU waveform using the wlanWaveformGenerator function to populate all PPDU
fields (preamble and data) in a single call. wlanWaveformGenerator accepts a bit stream, a format
configuration object (wlanHESUConfig, wlanHEMUConfig, wlanDMGConfig, wlanS1GConfig
wlanVHTConfig, wlanHTConfig, or wlanNonHTConfig) and Name,Value pairs to configure the
waveform.

Generate WLAN Waveforms
Generate HE, DMG, S1G, VHT, HT-mixed, and non-HT format waveforms. Vary configuration
parameters and plot the waveforms to highlight differences in waveforms and sample rates.

In each section of this example, you:

• Create a format-specific configuration object.
• Create a vector of information bits for the packet data payload. Internally, the

wlanWaveformGeneration function loops through the bits vector as many times as needed to
generate the specified number of packets.

• Generate the format-specific waveform and plot it. For plotting, because no filtering is applied to
the waveform and the oversampling rate is 1, set the sampling rate equal to the channel
bandwidth.

2 Tutorials

2-16

Generate Single User HE Format Waveform

Create an HE single-user (HE SU) configuration object and waveform. Using Name,Value pairs,
specify 4 packets and 15 microseconds of idle time. Display the configuration object and inspect its
properties and settings.

cfgHESU = wlanHESUConfig;
bits = [1;0;0;1;1];
hesuWaveform = wlanWaveformGenerator(bits,cfgHESU, ...
 'NumPackets',4,'IdleTime',15e-6);

Plot the single user HE format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(hesuWaveform)-1)/fs)*1e6;
plot(time,abs(hesuWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

The plot shows four single user HE format packets, with each packet separated by 15 microseconds
of idle time.

Generate Multiuser HE Format Waveform

Create an HE multiuser (HE MU) configuration object and waveform. Using Name,Value pairs,
specify 3 packets and 30 microseconds of idle time. Display the configuration object and inspect its
properties and settings.

 Waveform Generation

2-17

cfgHEMU = wlanHEMUConfig(192);
bits = [1;0;0;1;1];
hemuWaveform = wlanWaveformGenerator(bits,cfgHEMU, ...
 'NumPackets',3,'IdleTime',30e-6);

Plot the multiuser HE format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(hemuWaveform)-1)/fs)*1e6;
plot(time,abs(hemuWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

The plot shows three multiuser HE format packets, with each packet separated by 30 microseconds
of idle time.

Generate DMG Format Waveform

Create a DMG configuration object and waveform. Using Name,Value pairs, assign 13 for the MCS
which specifies an OFDM waveform, 4 packets, and 2 microseconds of idle time. Display the
configuration object and inspect its properties and settings.

cfgDMG = wlanDMGConfig('MCS',13);
bits = [1;0;0;1;1];
dmgWaveform = wlanWaveformGenerator(bits,cfgDMG, ...
 'NumPackets',4,'IdleTime',2e-6);

Plot the DMG format waveform, scaling the x-axis relative to the channel bandwidth.

2 Tutorials

2-18

fs = 2640e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(dmgWaveform)-1)/fs)*1e6;
plot(time,abs(dmgWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

The plot shows four DMG format packets, with each packet separated by 2 microseconds of idle time.

Generate S1G Format Waveform

Create a sub-1-GHz (S1G) configuration object and waveform. Using Name,Value pairs, specify 4
MHz channel bandwidth, 3 packets, and 15 microseconds of idle time. Display the configuration
object and inspect its properties and settings.

cfgS1G = wlanS1GConfig('ChannelBandwidth','CBW4');
bits = [1;0;0;1;1];

s1gWaveform = wlanWaveformGenerator(bits,cfgS1G, ...
 'NumPackets',3,'IdleTime',15e-6);

Plot the S1G format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 4e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(s1gWaveform)-1)/fs)*1e6;
plot(time,abs(s1gWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

 Waveform Generation

2-19

The plot shows three S1G format packets, with each packet separated by 15 microseconds of idle
time.

Generate VHT Format Waveform

Create a VHT configuration object and waveform. Using Name,Value pairs, specify 5 packets and 20
microseconds of idle time. Display the configuration object and inspect its properties and settings.

cfgVHT = wlanVHTConfig;
bits = [1;0;0;1;1];
vhtWaveform = wlanWaveformGenerator(bits,cfgVHT, ...
 'NumPackets',5,'IdleTime',20e-6);

Plot the VHT format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 80e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(vhtWaveform)-1)/fs)*1e6;
plot(time,abs(vhtWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

2 Tutorials

2-20

The plot shows five VHT format packets, with each packet separated by 20 microseconds of idle time.

Generate HT Format Waveform

Create an HT configuration object and waveform. Using Name,Value pairs, specify 5 packets and 30
microseconds of idle time. Display the configuration object and inspect its properties and settings.

cfgHT = wlanHTConfig;
bits = [1;0;0;1;1];
htWaveform = wlanWaveformGenerator(bits,cfgHT, ...
 'NumPackets',5,'IdleTime',30e-6);

Plot the HT format waveform, scaling the x-axis relative to the channel bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(htWaveform)-1)/fs)*1e6;
plot(time,abs(htWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

 Waveform Generation

2-21

The plot shows five HT format packets, with 30 microseconds of idle time separating each packet.

Generate Non-HT Format DSSS Waveform

Create a non-HT configuration object and generate a non-HT format DSSS waveform with a 2 Mbps
data rate. Using Name,Value pairs, specify 2 packets and 5 microseconds of idle time. Display the
configuration object and inspect its properties and settings.

cfgNonHT = wlanNonHTConfig('Modulation','DSSS','DataRate','2Mbps');
bits = [1;0;0;1;1];
nhtDSSSWaveform = wlanWaveformGenerator(bits,cfgNonHT, ...
 'NumPackets',2,'IdleTime',5e-6);

Plot the non-HT Format DSSS waveform, scaling the x-axis relative to the channel bandwidth. As
specified in IEEE 802.11-2012, Section 17.1.1, the channel bandwidth is 11 MHz for DSSS.

fs = 11e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(nhtDSSSWaveform)-1)/fs)*1e6;
plot(time,real(nhtDSSSWaveform),'.')
xlabel ('Time (microseconds)');
ylabel('Re[nhtDSSSWaveform]');
axis([8190,8200,-1.1,1.1])

2 Tutorials

2-22

Sample values in DSSS modulation are –1 or 1. The plot shows the real values for a section of the
waveform that includes the tail end of the first packet, the 5 microsecond idle period, and the
beginning of the second packet for the non-HT format DSSS modulated waveform.

Generate Non-HT Format OFDM Waveform

Create a non-HT configuration object and waveform. Using Name,Value pairs, specify 4 packets and
45 microseconds of idle time. Display the configuration object and inspect its properties and settings.

cfgNonHT = wlanNonHTConfig;
bits = [1;0;0;1;1];
nhtWaveform = wlanWaveformGenerator(bits,cfgNonHT, ...
 'NumPackets',4,'IdleTime',45e-6);

Plot the non-HT format OFDM waveform, scaling the x-axis relative to the channel bandwidth.

fs = 20e6; % Set sampling frequency equal to the channel bandwidth
time = ((0:length(nhtWaveform)-1)/fs)*1e6;
plot(time,abs(nhtWaveform))
xlabel ('Time (microseconds)');
ylabel('Magnitude');

 Waveform Generation

2-23

The plot shows four non-HT format OFDM modulated packets, with 45 microseconds of idle time
separating each packet.

Waveforms of Individual PPDU Fields
You can also create a VHT, HT, or non-HT PPDU waveform by generating and concatenating
waveforms for individual PPDU fields.

PPDU Format Individual Field Functions
VHT wlanLSTF, wlanLLTF, wlanLSIG, wlanVHTSTF,

wlanVHTLTF, wlanVHTSIGA, wlanVHTSIGB, and
wlanVHTData

HT wlanLSTF, wlanLLTF, wlanLSIG, wlanHTSTF,
wlanHTLTF, wlanHTSIG, and wlanHTData

Non-HT for OFDM modulation wlanLSTF, wlanLLTF, wlanLSIG, and
wlanNonHTData

Generating individual PPDU field waveforms, enables you to experiment with the individual fields
without generating an entire PPDU.

See Also
wlanHTConfig | wlanNonHTConfig | wlanVHTConfig

2 Tutorials

2-24

More About
• “Create Configuration Objects” on page 2-2
• “WLAN Channel Models” on page 2-28
• “What Is WLAN?” on page 3-2

 Waveform Generation

2-25

Generate and Parse WLAN MAC Frames
This example shows how to configure and generate WLAN MAC frames, then recover the payload of
MSDUs by parsing the MAC frame.

Introduction

The IEEE® 802.11™ family of standards supports four types of MAC frame: control, data,
management, and extension. Within each of these types, the standard defines a range of subtypes,
each of which serves a specific purpose in an 802.11™ network.

This example demonstrates how to configure, generate, and parse MPDUs and A-MPDUs by using
WLAN Toolbox™ configuration objects and functions.

Generate and Decode MPDU

Create a MAC frame configuration object for a Data frame, specifying a high-efficiency single-user
(HE SU) physical layer (PHY) configuration.

cfgMPDU = wlanMACFrameConfig('FrameType','Data','FrameFormat','HE-SU');

Specify an MSDU as a numeric vector of octets in bit format. You can also specify MSDUs as a
character vector or string of octets in hexadecimal format.

msdu = randi([0 255],32,1);

Generate the MPDU by calling the wlanMACFrame function, specifying bits as the output format.

[mpdu,mpduLength] = wlanMACFrame(msdu,cfgMPDU,'OutputFormat','bits');

Recover the MSDU by calling the wlanMPDUDecode function. The function also returns the MAC
frame configuration object and the status of the decoding. Check that the decoding operation returns
the correct frame format and display the status.

[rxCfgMPDU,payload,status] = wlanMPDUDecode(mpdu,wlanHESUConfig);
disp(isequal(cfgMPDU.FrameFormat,rxCfgMPDU.FrameFormat))

 1

disp(status)

 Success

Generate and Parse A-MPDU

Create a configuration object for a QoS Data MAC frame, specifying an HE SU PHY configuration.
Enable MPDU aggregation and disable MSDU aggregation.

cfgAMPDU = wlanMACFrameConfig('FrameType','QoS Data','FrameFormat','HE-SU',...
 'MPDUAggregation',true,'MSDUAggregation',false);

Specify a cell array of MSDUs, specifying each MSDU as a numeric vector of octets in bit format. You
can also specify MSDUs as a character vector or string of octets in hexadecimal format.

msduList = repmat({randi([0 255],32,1)},1,4);

Generate the MPDU for a HE SU PHY configuration by calling the wlanMACFrame function.

2 Tutorials

2-26

cfgPHY = wlanHESUConfig('MCS',5);
[ampdu,ampduLength] = wlanMACFrame(msduList,cfgAMPDU,cfgPHY,'OutputFormat','bits');

Deaggregate the A-MPDU to return the MPDU list by calling the wlanAMPDUDeaggregate function.
The function also returns the result of the delimiter cyclic redundancy check (CRC) and the status of
A-MPDU deaggregation.

[mpduList,delimiterCRCFailure,status] = wlanAMPDUDeaggregate(ampdu,cfgPHY);

Display the number of delimiter CRC failures and the status of deaggregation.

disp(nnz(delimiterCRCFailure))

 0

disp(status)

 Success

Obtain the MSDUs by decoding the deaggregated MPDUs with the wlanMPDUDecode function and
display the status of the decoding process.

if strcmp(status,'Success')
 for i = 1:numel(mpduList)
 if ~delimiterCRCFailure(i)
 [cfg,msdu,decodeStatus] = wlanMPDUDecode(mpduList{i},cfgPHY,'DataFormat','octets');
 disp(['MPDU ' num2str(i) ' decoding status: ' char(decodeStatus)])
 end
 end
end

MPDU 1 decoding status: Success
MPDU 2 decoding status: Success
MPDU 3 decoding status: Success
MPDU 4 decoding status: Success

See Also

More About
• “802.11ac Waveform Generation with MAC Frames”
• “802.11 MAC Frame Generation”
• “802.11 MAC Frame Decoding”

 Generate and Parse WLAN MAC Frames

2-27

WLAN Channel Models
This example demonstrates passing WLAN S1G, VHT, HT, and non-HT format waveforms through
appropriate fading channel models. When simulating a WLAN communications link, viable options for
channel modeling include the TGah,TGn and TGac models from WLAN Toolbox™ and the AWGN and
802.11g models from Communications Toolbox™. In this example, it is sufficient to set the channel
model sampling frequency to match the channel bandwidth because no front-end filtering is applied
to the signal and the oversampling rate is 1.

In each section of this example, you:

• Create a waveform.
• Transmit it through a fading channel with noise added.
• Use a spectrum analyzer to display the waveform before and after it passes through the noisy

fading channel.

Pass S1G Waveform Through TGah SISO Channel

Create a bit stream to use when generating the WLAN S1G format waveform.

bits = randi([0 1],1000,1);

Create a S1G configuration object, and generate an 2 MHz S1G waveform. Calculate the signal
power.

s1g = wlanS1GConfig;
preChS1G = wlanWaveformGenerator(bits,s1g);

Pass the signal through a TGah SISO channel with AWGN noise (SNR=10 dB) and a receiver with a 9
dB noise figure. Recall that the channel model sampling frequency is equal to the bandwidth in this
example. Set parameters using Name,Value pairs.

Create a TGah channel object. Set the channel model sampling frequency and channel bandwidth,
enable path loss and shadowing, and use the Model-D delay profile.

cbw = s1g.ChannelBandwidth;
fs = 2e6; % Channel model sampling frequency equals the channel bandwidth
tgahChan = wlanTGahChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-D');

Create an AWGN Channel object with SNR = 10 dB. Determine the signal power in Watts, accounting
for the TGah large scale fading pathloss.

preChSigPwr_dB = 10*log10(mean(abs(preChS1G)));
sigPwr = 10^((preChSigPwr_dB-tgahChan.info.Pathloss)/10);

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',10,'SignalPower', sigPwr);

Pass the S1G waveform through a SISO TGah channel and add the AWGN channel noise.

postChS1G = chNoise(tgahChan(preChS1G));

Create another AWGN Channel object to add receiver noise.

2 Tutorials

2-28

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Pass the S1G waveform through the receiver. Choose an appropriate noise variance, nVar, to set the
receiver noise level. Here, the receiver noise level is based on the noise variance for a receiver with a
9 dB noise figure. nVar = kTBF, where k is Boltzmann's constant, T is the ambient temperature of
290 K, B is the bandwidth, and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxS1G = rxNoise(postChS1G,nVar);

Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.

title = '2 MHz S1G Waveform Before and After TGah Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
 'SpectralAverages',10,'Title',title,'ChannelNames',{'Before','After'});
saScope([preChS1G,rxS1G])

Path loss accounts for the roughly 50 dB of separation between the waveform before and after it
passes through the TGah channel. The path loss results from the default transmitter-to-receiver
distance of 3 meters, and from shadowing effects. The signal level variation shows the frequency
selectivity of the delay profile across the frequency spectrum.

 WLAN Channel Models

2-29

Pass VHT Waveform Through TGac SISO Channel

Create a bit stream to use when generating the WLAN VHT format waveform.

bits = randi([0 1],1000,1);

Create a VHT configuration object, and generate an 80 MHz VHT waveform. Calculate the signal
power.

vht = wlanVHTConfig;
preChVHT = wlanWaveformGenerator(bits,vht);

Pass the signal through a TGac SISO channel with AWGN noise (SNR=10 dB) and a receiver with a 9
dB noise figure. Recall that the channel model sampling frequency is equal to the bandwidth in this
example. Set parameters using Name,Value pairs.

Create a TGac channel object. Set the channel model sampling frequency and channel bandwidth,
enable path loss and shadowing, and use the Model-D delay profile.

cbw = vht.ChannelBandwidth;
fs = 80e6; % Channel model sampling frequency equals the channel bandwidth
tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-D');

Create an AWGN Channel object with SNR = 10 dB. Determine the signal power in Watts, accounting
for the TGac large scale fading pathloss.

preChSigPwr_dB = 10*log10(mean(abs(preChVHT)));
sigPwr = 10^((preChSigPwr_dB-tgacChan.info.Pathloss)/10);

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',10,'SignalPower', sigPwr);

Pass the VHT waveform through a SISO TGac channel and add the AWGN channel noise.

postChVHT = chNoise(tgacChan(preChVHT));

Create another AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Pass the VHT waveform through the receiver. Choose an appropriate noise variance, nVar, to set the
receiver noise level. Here, the receiver noise level is based on the noise variance for a receiver with a
9 dB noise figure. nVar = kTBF, where k is Boltzmann's constant, T is the ambient temperature of
290 K, B is the bandwidth, and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxVHT = rxNoise(postChVHT,nVar);

Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.

title = '80 MHz VHT Waveform Before and After TGac Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...

2 Tutorials

2-30

 'SpectralAverages',10,'Title',title,'ChannelNames',{'Before','After'});
saScope([preChVHT,rxVHT])

Path loss accounts for the roughly 50 to 60 dB of separation between the waveform before and after it
passes through the TGac channel. The path loss results from the default transmitter-to-receiver
distance of 3 meters, and from shadowing effects. The signal level variation shows the frequency
selectivity of the delay profile across the frequency spectrum.

Pass HT Waveform Through TGn SISO Channel

Create a bit stream to use when generating the WLAN HT format waveform.

bits = randi([0 1],1000,1);

Create an HT configuration object, and generate an HT waveform.

ht = wlanHTConfig;
preChHT = wlanWaveformGenerator(bits,ht);

Pass the signal through a TGn SISO channel with AWGN noise (SNR=10 dB) and a receiver with a 9
dB noise figure. Recall that the channel model sampling frequency is equal to the bandwidth in this
example. Set parameters using Name,Value pairs.

Create a TGn channel object. Set the channel model sampling frequency and channel bandwidth,
enable path loss and shadowing, and use the Model-F delay profile.

 WLAN Channel Models

2-31

fs = 20e6; % Channel model sampling frequency equals the channel bandwidth
tgnChan = wlanTGnChannel('SampleRate',fs,'LargeScaleFadingEffect', ...
 'Pathloss and shadowing','DelayProfile','Model-F');

Pass the HT waveform through a TGn channel. Use the awgn function to add channel noise at an SNR
level of 10 dB.

postChHT = awgn(tgnChan(preChHT),10,'measured');

Create an AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Pass the HT waveform through the receiver. Choose an appropriate noise variance, nVar, for setting
the receiver noise level. Here, the receiver noise is based on the noise variance for a receiver with a 9
dB noise figure. nVar = kTBF, where k is Boltzmann's constant, T is the ambient temperature of 290
K, B is the bandwidth, and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxHT = rxNoise(postChHT, nVar);

Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.

title = '20 MHz HT Waveform Before and After TGn Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
 'SpectralAverages',10,'Title',title,'ChannelNames',{'Before','After'});
saScope([preChHT,postChHT])

2 Tutorials

2-32

Path loss accounts for the roughly 50 to 60 dB of separation between the waveform before and after it
passes through the TGn channel. The path loss results from the default transmitter-to-receiver
distance of 3 meters, and from shadowing effects. The signal level variation shows the frequency
selectivity of the delay profile across the frequency spectrum.

Pass Non-HT Waveform Through 802.11g Channel

Create a bit stream to use when generating the WLAN Non-HT format waveform.

bits = randi([0 1],1000,1);

Create a non-HT configuration object, and generate a non-HT waveform.

nht = wlanNonHTConfig;
preChNonHT = wlanWaveformGenerator(bits,nht);

Calculate free-space path loss for a transmitter-to-receiver separation distance of 3 meters. Create an
802.11g channel object with a 3 Hz maximum Doppler shift and an RMS path delay equal to two
times the sample time. Recall that the channel model sampling frequency is equal to the bandwidth in
this example. Create an AWGN channel object.

dist = 3;
fc = 2.4e9;
pathLoss = 10^(-log10(4*pi*dist*(fc/3e8)));
fs = 20e6; % Channel model sampling frequency equals the channel bandwidth

 WLAN Channel Models

2-33

maxDoppShift = 3;
trms = 2/fs;
ch802 = comm.RayleighChannel('SampleRate',fs,'MaximumDopplerShift',maxDoppShift,'PathDelays',trms);

Pass the non-HT waveform through an 802.11g channel. Use the awgn function to add channel noise
at an SNR level of 10 dB.

postChNonHT = awgn(ch802(preChNonHT),10,'measured');

Create an AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Pass the non-HT waveform through the receiver. Choose an appropriate noise variance, nVar, for
setting the receiver noise level. Here, the receiver noise is based on the noise variance for a receiver
with a 9 dB noise figure. nVar = kTBF, where k is Boltzmann's constant, T is the ambient
temperature of 290 K, B is the bandwidth, and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxNonHT = rxNoise(postChNonHT, nVar)* pathLoss;

Display a spectrum analyzer with before-channel and after-channel waveforms. Use
SpectralAverages = 10 to reduce noise in the plotted signals.

title = '20 MHz Non-HT Waveform Before and After 802.11g Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
 'SpectralAverages',10,'Title',title,'ChannelNames',{'Before','After'});
saScope([preChNonHT,rxNonHT])

2 Tutorials

2-34

Free-space path loss accounts for the roughly 50 to 60 dB of separation between the waveform before
and after it passes through the 802.11g channel. The path loss results from the specified transmitter-
to-receiver distance of 3 meters, and from shadowing effects. The signal level variation shows the
frequency selectivity of the delay profile across the frequency spectrum.

Pass VHT Waveform Through TGac MIMO Channel

Create a bit stream to use when generating the WLAN VHT format waveform.

bits = randi([0 1],1000,1);

Create a multi-user VHT configuration object, and generate a VHT waveform. Set the number of
transmit antennas to four. Set the number of space-time streams and the number of receive antennas
to 3. Because the number of transmit antennas is not equal to the number of space-time streams, the
spatial mapping is not direct. Set the spatial mapping to Hadamard.

ntx = 4;
nsts = 3;
nrx = 3;
vht = wlanVHTConfig('NumTransmitAntennas',ntx, ...
 'NumSpaceTimeStreams',nsts,'SpatialMapping','Hadamard');
preChVHT = wlanWaveformGenerator(bits,vht);

Create TGac MIMO channel and AWGN channel objects. Recall that the channel model sampling
frequency is equal to the bandwidth in this example. Disable large-scale fading effects.

 WLAN Channel Models

2-35

cbw = vht.ChannelBandwidth;
fs = 80e6; % Channel model sampling frequency equals the channel bandwidth
tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw,...
 'NumTransmitAntennas',ntx,'NumReceiveAntennas',nrx);
tgacChan.LargeScaleFadingEffect = 'None';

Pass the VHT waveform through a TGac channel. Use the awgn function to add channel noise at an
SNR level of 10 dB.

postChVHT = awgn(tgacChan(preChVHT),10,'measured');

Create an AWGN Channel object to add receiver noise.

rxNoise = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Pass the multi-user VHT waveform through a noisy TGac channel. Choose an appropriate noise
variance, nVar, for setting the AWGN level. Here, the AWGN level is based on the noise variance for a
receiver with a 9 dB noise figure. nVar = kTBF, where k is Boltzmann's constant, T is the ambient
temperature of 290 K, B is the bandwidth, and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);

rxVHT = rxNoise(postChVHT,nVar);

Display a spectrum analyzer showing the multiple streams after the channel effects have been added.
Use SpectralAverages = 10 to reduce noise in the plotted signals.

title = '80 MHz VHT 4x3 MIMO Waveform After TGac Channel';
saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'ShowLegend',true,...
 'SpectralAverages',10,'Title',title,'ChannelNames', ...
 {'RX1','RX2','RX3'});
saScope(rxVHT)

2 Tutorials

2-36

The overlaid signals show the TGac channel variation between the received streams.

References

[1] Erceg, V., L. Schumacher, P. Kyritsi, et al. TGn Channel Models. Version 4. IEEE 802.11-03/940r4,
May 2004.

[2] Breit, G., H. Sampath, S. Vermani, et al. TGac Channel Model Addendum. Version 12. IEEE
802.11-09/0308r12, March 2010.

See Also
wlanHTConfig | wlanNonHTConfig | wlanTGacChannel | wlanTGnChannel | wlanVHTConfig

Related Examples
• “Waveform Generation” on page 2-14
• “Packet Recovery” on page 2-38
• “What Is WLAN?” on page 3-2

 WLAN Channel Models

2-37

Packet Recovery
Received packets are degraded due to radio and channel impairments. Recovery of packet contents
requires symbol timing and frequency offset correction, channel estimation, and demodulation and
recovery of the preamble and payload. WLAN Toolbox functions perform these operations on VHT, HT-
mixed, and non-HT PPDU fields.

VHT Packet Recovery
This example shows how to recover contents from a VHT format waveform.

Generate 80 MHz VHT Waveform

Create a VHT configuration object. Set APEPLength to 3200 and MCS to 5. Create a transmission bit
stream for the data field. For a VHT waveform, the data field contains PSDULength*8 bits.

cfgVHT = wlanVHTConfig('APEPLength',3200,'MCS',5);
txBits = randi([0 1],cfgVHT.PSDULength*8,1);

Create the PPDU fields individually. Create L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, and
VHT-SIG-B preamble fields and the VHT-Data field.

lstf = wlanLSTF(cfgVHT);
lltf = wlanLLTF(cfgVHT);
lsig = wlanLSIG(cfgVHT);
vhtSigA = wlanVHTSIGA(cfgVHT);
vhtstf = wlanVHTSTF(cfgVHT);
vhtltf = wlanVHTLTF(cfgVHT);
vhtSigB = wlanVHTSIGB(cfgVHT);
vhtData = wlanVHTData(txBits,cfgVHT);

Concatenate the individual fields to create a single PPDU waveform.

txPPDU = [lstf; lltf; lsig; vhtSigA; vhtstf; vhtltf; vhtSigB; vhtData];

Pass VHT Waveform Through TGac SISO Channel

Create TGac SISO and AWGN channel objects.

chBW = cfgVHT.ChannelBandwidth;
fs = 80e6;
tgac = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',chBW,...
 'LargeScaleFadingEffect','Pathloss and shadowing');
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','VarianceSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. The noise variance, noiseVar, is
equal to kTBF, where k is Boltzmann's constant, T is the ambient temperature of 290 K, B is the
bandwidth (sample rate), and F is the receiver noise figure. Pass the transmitted waveform through
the noisy TGac channel.

noiseVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10)

noiseVar = 2.5438e-12

rxPPDU = awgnChan(tgac(txPPDU),noiseVar);

2 Tutorials

2-38

Recover VHT Preamble Contents from PPDU

In general, the L-STF and L-LTF are processed to perform frequency offset estimation and correction,
and symbol timing. For this example, the carrier frequency is not offset and the packet timing is 'on-
time'. Therefore, for accurate demodulation, determination of carrier frequency offset and symbol
timing is not required.

Find the start and stop indices for the PPDU fields.

fieldInd = wlanFieldIndices(cfgVHT)

fieldInd = struct with fields:
 LSTF: [1 640]
 LLTF: [641 1280]
 LSIG: [1281 1600]
 VHTSIGA: [1601 2240]
 VHTSTF: [2241 2560]
 VHTLTF: [2561 2880]
 VHTSIGB: [2881 3200]
 VHTData: [3201 12160]

The stop index of VHT-SIG-B indicates the preamble length in samples.

numSamples = fieldInd.VHTSIGB(2);

Plot the preamble and the beginning of the packet data. Add markers to and plot to delineate the
packet field boundaries.

time = ([0:double(numSamples)-1]/fs)*1e6;
peak = 1.2*max(abs(rxPPDU(1:numSamples)));
fieldMarkers = zeros(numSamples,1);
fieldMarkers(fieldInd.LSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LLTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LSIG(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTSIGA(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTLTF(2)-1,1) = peak;
fieldMarkers(fieldInd.VHTSIGB(2)-1,1) = peak;
plot(time,abs(rxPPDU(1:numSamples)),time,fieldMarkers)
xlabel ('Time (microseconds)')
ylabel('Magnitude')
title('VHT Preamble')

 Packet Recovery

2-39

Demodulate the L-LTF and estimate the channel.

rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,cfgVHT);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,cfgVHT);

Extract the L-SIG field from the received PPDU, recover its information bits and check the CRC.

rxLSIG = rxPPDU(fieldInd.LSIG(1):fieldInd.LSIG(2),:);
[recLSIG,failCRC] = wlanLSIGRecover(rxLSIG,chEstLLTF,noiseVar,chBW);
failCRC

failCRC = logical
 0

failCRC = 0 indicates that CRC passed.

For the VHT format, the L-SIG rate bits are constant and set to [1 1 0 1]. Inspect the L-SIG rate
information and confirm that this constant sequence is recovered. For the VHT format, the MCS
setting in VHT-SIG-A2 determines the actual data rate.

rate = recLSIG(1:4)'

rate = 1x4 int8 row vector

 1 1 0 1

2 Tutorials

2-40

Extract the VHT-SIG-A and confirm that the CRC check passed.

rxVHTSIGA = rxPPDU(fieldInd.VHTSIGA(1):fieldInd.VHTSIGA(2),:);
[recVHTSIGA,failCRC] = wlanVHTSIGARecover(rxVHTSIGA, ...
 chEstLLTF,noiseVar,chBW);
failCRC

failCRC = logical
 0

Extract the MCS setting from the VHT-SIG-A. For single user VHT, the MCS is located in VHT-SIG-A2
bits 4 through 7.

recMCSbits = (recVHTSIGA(29:32))';
recMCS = bi2de(double(recMCSbits))

recMCS = 5

isequal(recMCS,cfgVHT.MCS)

ans = logical
 1

The recovered MCS setting matches the MCS value in the configuration object.

Extract and demodulate the VHT-LTF. Use the demodulated signal to perform channel estimation. Use
the channel estimate to recover the VHT-SIG-B and VHT-Data fields.

rxVHTLTF = rxPPDU(fieldInd.VHTLTF(1):fieldInd.VHTLTF(2),:);
demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,cfgVHT);
chEstVHTLTF = wlanVHTLTFChannelEstimate(demodVHTLTF,cfgVHT);

Extract and recover the VHT-SIG-B.

rxVHTSIGB = rxPPDU(fieldInd.VHTSIGB(1):fieldInd.VHTSIGB(2),:);
recVHTSIGB = wlanVHTSIGBRecover(rxVHTSIGB,chEstVHTLTF,noiseVar,chBW);

As described in IEEE Std 802.11ac-2013, Table 22-1, the value in the VHT-SIG-B Length field
multiplied by 4 is the recovered APEP length for packets carrying data. Verify that the APEP length,
contained in the first 19 bits of the VHT-SIG-B, corresponds to the specified APEP length.

sigbAPEPbits = recVHTSIGB(1:19)';
sigbAPEPlength = bi2de(double(sigbAPEPbits))*4

sigbAPEPlength = 3200

isequal(sigbAPEPlength,cfgVHT.APEPLength)

ans = logical
 1

The recovered value matches the configured APEP Length.

Recover equalized symbols using channel estimates from the VHT-LTF.

recPSDU = wlanVHTDataRecover(rxPPDU(fieldInd.VHTData(1):fieldInd.VHTData(2),:),...
 chEstVHTLTF,noiseVar,cfgVHT);

 Packet Recovery

2-41

Compare transmission and receive PSDU bits.

numErr = biterr(txBits,recPSDU)

numErr = 0

The number of bit errors is zero.

HT Packet Recovery
This example shows how to recover content from an HT-format waveform.

Generate 20 MHz HT Waveform

Create an HT configuration object and transmission PSDU. Set MCS to 2. For an HT waveform, the
data field is PSDULength*8 bits.

cfgHT = wlanHTConfig('MCS',2);
txPSDU = randi([0 1],cfgHT.PSDULength*8,1);

Create the PPDU fields individually. Create L-STF, L-LTF, L-SIG, HT-SIG, HT-STF, and HT-LTF preamble
fields and the HT-Data field.

lstf = wlanLSTF(cfgHT);
lltf = wlanLLTF(cfgHT);
lsig = wlanLSIG(cfgHT);
htsig = wlanHTSIG(cfgHT);
htstf = wlanHTSTF(cfgHT);
htltf = wlanHTLTF(cfgHT);
htData = wlanHTData(txPSDU,cfgHT);

Concatenate the individual fields to create a single PPDU waveform.

txPPDU = [lstf; lltf; lsig; htsig; htstf; htltf; htData];

Pass HT Waveform Through TGn SISO Channel

Create TGn SISO channel and AWGN channel objects.

fs = 20e6;
tgnChan = wlanTGnChannel('SampleRate',fs,'LargeScaleFadingEffect','Pathloss and shadowing');
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','VarianceSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. The noise variance, noiseVar, is
equal to kTBF, where k is Boltzmann's constant, T is the ambient temperature of 290 K, B is the
bandwidth (sample rate), and F is the receiver noise figure. Pass the transmitted waveform through
the noisy TGn channel.

noiseVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
rxPPDU = awgnChan(tgnChan(txPPDU),noiseVar);

Recover HT Preamble Contents from PPDU

In general, the L-STF and L-LTF are processed to perform frequency offset estimation and correction,
and symbol timing. For this example, the carrier frequency is not offset and the packet timing is 'on-
time'. Therefore, for accurate demodulation, determination of carrier frequency offset and symbol
timing is not required.

2 Tutorials

2-42

Find the start and stop indices for the PPDU fields.

fieldInd = wlanFieldIndices(cfgHT)

fieldInd = struct with fields:
 LSTF: [1 160]
 LLTF: [161 320]
 LSIG: [321 400]
 HTSIG: [401 560]
 HTSTF: [561 640]
 HTLTF: [641 720]
 HTData: [721 9200]

The stop index of HT-LTF indicates the preamble length in samples.

numSamples = fieldInd.HTLTF(2);

Plot the preamble and the beginning of the packet data. Add markers to and plot to delineate the
packet field boundaries.

time = ([0:double(numSamples)-1]/fs)*1e6;
peak = 1.2*max(abs(rxPPDU(1:numSamples)));
fieldMarkers = zeros(numSamples,1);
fieldMarkers(fieldInd.LSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LLTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LSIG(2)-1,1) = peak;
fieldMarkers(fieldInd.HTSIG(2)-1,1) = peak;
fieldMarkers(fieldInd.HTSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.HTLTF(2)-1,1) = peak;
plot(time,abs(rxPPDU(1:numSamples)),time,fieldMarkers)
xlabel ('Time (microseconds)')
ylabel('Magnitude')
title('HT Format Preamble')

 Packet Recovery

2-43

Demodulate the L-LTF and estimate the channel.

rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,cfgHT);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,cfgHT);

Extract the L-SIG field from the received PPDU and recover its information bits.

rxLSIG = rxPPDU(fieldInd.LSIG(1):fieldInd.LSIG(2),:);
[recLSIG,failCRC] = wlanLSIGRecover(rxLSIG,chEstLLTF,noiseVar,cfgHT.ChannelBandwidth);
failCRC

failCRC = logical
 0

failCRC = 0 indicates that CRC passed.

For the HT format, the L-SIG rate bits are constant and set to [1 1 0 1]. Inspect the L-SIG rate
information and confirm that this constant sequence is recovered. For the HT format, the MCS setting
in HT-SIG determines the actual data rate.

rate = recLSIG(1:4)'

rate = 1x4 int8 row vector

 1 1 0 1

2 Tutorials

2-44

Extract the HT-SIG and confirm that the CRC check passed.

recHTSIG = rxPPDU(fieldInd.HTSIG(1):fieldInd.HTSIG(2),:);
[recHTSIG,failCRC] = wlanHTSIGRecover(recHTSIG,chEstLLTF,noiseVar,cfgHT.ChannelBandwidth);
failCRC

failCRC = logical
 0

Extract the MCS setting from the HT-SIG. For HT, the MCS is located in HT-SIG bits 0 through 6.

recMCSbits = (recHTSIG(1:7))';
recMCS = bi2de(double(recMCSbits))

recMCS = 2

isequal(recMCS,cfgHT.MCS)

ans = logical
 1

The recovered MCS setting matches the MCS value in the configuration object.

Extract and demodulate the HT-LTF. Use the demodulated signal to perform channel estimation. Use
the channel estimate to recover the HT-Data field.

rxHTLTF = rxPPDU(fieldInd.HTLTF(1):fieldInd.HTLTF(2),:);
demodHTLTF = wlanHTLTFDemodulate(rxHTLTF,cfgHT);
chEstHTLTF = wlanHTLTFChannelEstimate(demodHTLTF,cfgHT);

Recover HT-Data Contents from PPDU

Recover the received equalized symbols using channel estimates from the HT-LTF.

[recPSDU] = wlanHTDataRecover(rxPPDU(fieldInd.HTData(1):fieldInd.HTData(2),:),...
 chEstHTLTF,noiseVar,cfgHT);

Compare the transmitted and received PSDU bits, and confirm that the number of bit errors is zero.

numErr = biterr(txPSDU,recPSDU)

numErr = 0

Non-HT Packet Recovery
This example steps through recovery of non-HT-format waveform content.

Generate 20 MHz Non-HT Waveform

Create a non-HT configuration object and transmission PSDU. Set MCS to 4.For a non-HT waveform,
the data field is PSDULength*8 bits.

cfgNonHT = wlanNonHTConfig('MCS',4);
txPSDU = randi([0 1],cfgNonHT.PSDULength*8,1);

Create the PPDU fields individually. Use the non-HT-Data contents to check the bit error rate after
recovery. Create L-STF, L-LTF, and L-SIG preamble fields and non-HT data field.

 Packet Recovery

2-45

lstf = wlanLSTF(cfgNonHT);
lltf = wlanLLTF(cfgNonHT);
lsig = wlanLSIG(cfgNonHT);
nhtData = wlanNonHTData(txPSDU,cfgNonHT);

Concatenate the individual fields to create a single PPDU waveform.

txPPDU = [lstf; lltf; lsig; nhtData];

Pass Non-HT Waveform Through 802.11g SISO Channel

Calculate the free-space path loss for a transmitter-to-receiver separation distance of 3 meters.
Create an 802.11g channel with a 3 Hz maximum Doppler shift and an RMS path delay equal to two
times the sample time. Create an AWGN channel.

dist = 3;
pathLoss = 10^(-log10(4*pi*dist*(2.4e9/3e8)));
fs = 20e6;
trms = 2/fs;
maxDoppShift = 3;
ch802 = comm.RayleighChannel('SampleRate',fs,'MaximumDopplerShift',maxDoppShift,'PathDelays',trms);
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','VarianceSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. The noise variance, noiseVar, is
equal to kTBF, where k is Boltzmann's constant, T is the ambient temperature of 290 K, B is the
bandwidth (sample rate), and F is the receiver noise figure. Pass the transmitted waveform through
the noisy, lossy 802.11g channel.

noiseVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
rxPPDU = awgnChan(ch802(txPPDU),noiseVar) * pathLoss;

Recover Non-HT Preamble Contents from PPDU

In general, the L-STF and L-LTF are processed to perform frequency offset estimation and correction,
and symbol timing. For this example, the carrier frequency is not offset and the packet timing is 'on-
time'. Therefore, for accurate demodulation, determination of carrier frequency offset and symbol
timing is not required.

Find the start and stop indices for the PPDU fields.

fieldInd = wlanFieldIndices(cfgNonHT)

fieldInd = struct with fields:
 LSTF: [1 160]
 LLTF: [161 320]
 LSIG: [321 400]
 NonHTData: [401 7120]

The stop index of the L-SIG field indicates the preamble length in samples.

numSamples = fieldInd.LSIG(2);

Plot the preamble and the beginning of the packet data. Add markers to and plot to delineate the
packet field boundaries.

time = ((0:double(numSamples)-1)/fs)*1e6;
peak = 1.2*max(abs(rxPPDU(1:numSamples)));

2 Tutorials

2-46

fieldMarkers = zeros(numSamples,1);
fieldMarkers(fieldInd.LSTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LLTF(2)-1,1) = peak;
fieldMarkers(fieldInd.LSIG(2)-1,1) = peak;
plot(time,abs(rxPPDU(1:numSamples)),time,fieldMarkers)
xlabel ('Time (microseconds)')
ylabel('Magnitude')
title('Non-HT Format Preamble')

Demodulate the L-LTF and estimate the channel.

rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,cfgNonHT);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,cfgNonHT);

Extract the L-SIG field from the received PPDU and recover its information bits.

rxLSIG = rxPPDU(fieldInd.LSIG(1):fieldInd.LSIG(2),:);
recLSIG = wlanLSIGRecover(rxLSIG,chEstLLTF,noiseVar,'CBW20');

The first four bits of the L-SIG field, bits 0 through 3, contain the rate information. Confirm that the
sequence [1 0 0 1] is recovered. This sequence corresponds to the 24 MHz data rate for the non-
HT MCS setting of 4.

rate = recLSIG(1:4)'

rate = 1x4 int8 row vector

 Packet Recovery

2-47

 1 0 0 1

Extract and demodulate the L-LTF. Use the demodulated signal to perform channel estimation. Use
the channel estimate to recover the non-HT-Data field.

rxLLTF = rxPPDU(fieldInd.LLTF(1):fieldInd.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,cfgNonHT);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,cfgNonHT);

Recover Non-HT-Data Contents from PPDU

Recover equalized symbols using channel estimates from HT-LTF, specifying a zero-forcing
equalization method.

rxPSDU = rxPPDU(fieldInd.NonHTData(1):fieldInd.NonHTData(2),:);
[recPSDU,~,eqSym] = wlanNonHTDataRecover(rxPSDU,chEstLLTF,noiseVar,cfgNonHT,'EqualizationMethod','ZF');

Compare the transmitted and received PSDU bits, and confirm that the number of bit errors is zero.

numErr = biterr(txPSDU,recPSDU)

numErr = 0

See Also
wlanHTConfig | wlanNonHTConfig | wlanVHTConfig

Related Examples
• “WLAN Channel Models” on page 2-28
• “What Is WLAN?” on page 3-2
• “Build VHT PPDU”
• “Build HT PPDU”
• “Build Non-HT PPDU”

2 Tutorials

2-48

About WLAN

• “What Is WLAN?” on page 3-2
• “WLAN Radio Frequency Channels” on page 3-9
• “Acknowledgments” on page 3-11

3

What Is WLAN?
In this section...
“Network Architecture” on page 3-2
“WLAN Protocol Stack” on page 3-3
“WLAN Message Exchange” on page 3-4
“Physical Layer Evolution” on page 3-5

In general, a wireless local area network (WLAN) refers to a wireless computer network. More
commonly, WLAN is equated with the implementation specified by the IEEE 802.11 group of
standards and branded as Wi-Fi® by the Wi-Fi Alliance. The Wi-Fi Alliance certifies interoperability
between IEEE 802.11 devices from different manufacturers. With WLAN Toolbox, you can model
IEEE 802.11 standardized implementations of the WLAN physical (PHY) and medium access control
(MAC) layers. You can also explore variations on implementations for future evolution of the standard.

Network Architecture
IEEE 802.11 defines the network architectures. In IEEE 802.11, a group of stations (STAs) within a
defined coverage area and with appropriate association to each other form a basic service set (BSS).
The BSS is a basic building block for 802.11 network architecture. A basic service area (BSA) defines
an area containing STAs within a BSS. STAs can be associated in overlapping BSSs. In terms of
mobility, STAs are either fixed, portable, or mobile. Any compliant STA can serve as an access point
(AP).

This figure depicts WLAN components and network architectures built up from BSSs.

3 About WLAN

3-2

• Independent BSS (IBSS) describes STAs communicating directly with one another in an ad-hoc
fashion. An IBSS has no connection to the wired network.

• Infrastructure BSS describes STAs associated with a central STA that manages the BSS. The
central STA is referred to as an access point (AP). This deployment is commonly used in home,
office, and hotspot network installations. Generally speaking, the AP connects wirelessly with
associated STAs and is wired to the Internet. This connection enables associated STAs to
communicate beyond the local BSS. The APs also wirelessly serve STAs in a BSA, providing
internet connectivity for those STAs.

• Distributed systems (DS) interconnect infrastructure BSSs via their APs. Typically the DS
backbone is an 802.3 Ethernet LAN.

• Extended service set (ESS) describes a set of infrastructure BSSs interconnected by a DS. In an
ESS, APs communicate among themselves to forward traffic from one BSS to another and to
facilitate the movement of mobile station from one BSS to another.

WLAN Protocol Stack
The interworking reference model shown here includes a subset of the network components
associated with the data link layer (DLL) and physical layer (PHY). Section 4.9.2 of [2] describes the
interworking reference model for 802.11. The medium access control (MAC) is a sublayer of the DLL.

The 802.11 standards focus on the MAC and PHY as a whole. WLAN Toolbox functionality focuses on
the physical-medium-dependent (PMD) and physical layer convergence procedure (PLCP) sublayers
of the PHY, the MAC sublayer, and their interfaces.

 What Is WLAN?

3-3

WLAN Message Exchange
Data and control information messages are exchanged between layers of the protocol stack within an
individual STA and between peer layers in communicating STAs.

• Data and control information exchanged between peer STA layers are protocol information
transfers. See (A-)MPDU and PPDU in the figure.

• Data and control information exchanged between layers within an STA are service information
transfers. See MSDU and PSDU in the figure.

WLAN Toolbox functionality focuses on MAC and PHY implementations. Specifically, the toolbox
models the exchange of PPDUs between PHY peers, and the exchange of MPDUs or A-MPDUs
between MAC peers. Messages exchanged between protocol stack layers are briefly described here.
For more information on these messages, see [2].

Message Description
MSDU — MAC service data unit Messages that transfer information between the

logical link control (LLC) layer and the MAC layer
within an STA

MPDU or A-MPDU — MAC protocol data unit or
aggregated MAC protocol data unit

Messages that transfer information between MAC
layer peers in communicating STAs

PSDU — PLCP service data unit Messages that transfer information between the
MAC and PHY layers within an STA

PPDU — PLCP protocol data unit Messages that transfer information between PHY
layer peers in communicating STAs

3 About WLAN

3-4

This figure shows the distinction between these WLAN message data units for a nonaggregated MAC
frame.

Note In reference to PSDU, the terms PLCP SDU and PHY SDU appear in the 802.11 standard. PLCP
is the physical layer convergence procedure sublayer of the PHY. No distinction is made when the
terms are used between layers.

Physical Layer Evolution
The IEEE 802.11 standardized implementation of WLAN has evolved since its first release in 1997.
Today, it is deployed worldwide in unlicensed regions of the radio frequency spectrum. Since the first
release, the 802.11 standard has progressed to include several physical layer implementations and
has ensured backward compatibility with legacy releases. Over time, the maximum achievable
transmission data rate has grown from 1 megabit per second (Mbps) to nearly 7 gigabit per second
(Gbps).

WLAN Toolbox provides native support for the various 802.11 standard versions listed here. The
toolbox focuses on the PHY and MAC layers, and enables adaptation of standards-based functionality
to explore custom implementations.

Standard Release
Year

Modulatio
n

Base
Frequency
(GHz)

Bandwidth
(MHz)

Maximum
Throughpu
t (Mbps)

Antenna
Scheme

PPDU
Format

802.11 1997 DSSS 2.4 11 2 SISO non-HT
802.11b™ 1999 HR/

DSSS/CCK
2.4 11 11 SISO non-HT

802.11a™ 1999 OFDM 5 5, 10, 20 54 SISO non-HT
802.11g™ 2003 802.11b and 802.11a @ 2.4 GHz
802.11j™ 2004 OFDM 4.9 and 5 10, 20 27 SISO non-HT

 What Is WLAN?

3-5

Standard Release
Year

Modulatio
n

Base
Frequency
(GHz)

Bandwidth
(MHz)

Maximum
Throughpu
t (Mbps)

Antenna
Scheme

PPDU
Format

802.11n™
(Wi-Fi 4)

2009 OFDM 2.4 and 5 20, 40 < 600 MIMO, up
to four
streams

HT

802.11p™ 2010 OFDM 5 5, 10 27 SISO non-HT
802.11ad™ 2012 SC/OFDM 60 GHz 1760 (SC),

2640
(OFDM)

< 7000 MIMO
single
stream with
beamformin
g

DMG

802.11ac™
(Wi-Fi 5)

2013 OFDM 5 20, 40, 80,
160, 80+80

< 7000 DL MU-
MIMO up to
eight
streams

VHT

802.11ah™ 2016 OFDM < 1 1, 2, 4, 8,
16

346 DL MU-
MIMO up to
four
streams

S1G

802.11ax™
(Wi-Fi 6)

2020
(anticipated
)

OFDMA 2.4 and 5 20, 40, 80,
160, 80+80

< 10,000 UL and DL
MU-MIMO
up to eight
streams

HE

Deployment and commercial uptake grew with the increased data rates offered by 802.11b direct
sequence spread spectrum (DSSS) with complementary code keying (CCK). At that time, companies
began offering 802.11b products and systems for WLAN.

The 802.11a amendment increased data rates by introducing an orthogonal frequency division
multiplexing (OFDM) physical layer. However, OFDM was deployed at only 5 GHz, so uptake was
slow. A short time later, the Federal Communications Commission (FCC) allowed the use of OFDM at
2.4 GHz.

The adoption of the 802.11g amendment offered the opportunity to operate the PHY defined by
802.11a at 2.4 GHz, with backward compatibility to the 802.11b PHY.

With 802.11n, a data rate increase came by way of widened channel bandwidth and allowance of up
to four input/output streams.

For 802.11ac, wider channels and up to eight input/output streams offers higher maximum
throughputs. This increased throughput capability enables users to stream video to mobile devices in
the home or at public mobile hot spots.

The 802.11ad amendment specifies operation in the 60-GHz band.

The 802.11ah amendment uses sub-1-GHz frequencies (unlicensed 900-MHz bands) to provide
extended range, and has low energy consumption to support the concepts involving the Internet of
Things (IoT).

The 802.11ax amendment introduces orthogonal frequency-division multiple access (OFDMA) to
improve overall spectral efficiency, and higher-order 1024-point quadrature amplitude modulation

3 About WLAN

3-6

(1024-QAM) support for increased throughput. The demand for bandwidth continues to grow and the
IEEE 802.11 working groups continue to advance standards to raise the throughput ceiling.

For the history of IEEE 802.11 and to monitor working group activities, consult the IEEE website.

References
[1] IEEE P802.11ax/D4.1. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications. Amendment 1: Enhancements for High Efficiency WLAN.” Draft
Standard for Information technology — Telecommunications and information exchange
between systems. Local and metropolitan area networks — Specific requirements.

[2] IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012). “Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standard for
Information technology — Telecommunications and information exchange between systems.
Local and metropolitan area networks — Specific requirements.

[3] IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016 as amended by IEEE Std
802.11ai™-2016). “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Amendment 2: Sub 1 GHz License Exempt Operation.” IEEE Standard
for Information technology — Telecommunications and information exchange between
systems. Local and metropolitan area networks — Specific requirements.

[4] IEEE STD 802.11ac-2013 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std
802.11ae™-2012, IEEE Std 802.11a™-2012, and IEEE Std 802.11ad-2012). “Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 4:
Enhancements for Very High Throughput Operation in Bands below 6 GHz.” IEEE Standard
for Information technology — Telecommunications and information exchange between
systems. Local and metropolitan area networks — Specific requirements.

[5] IEEE STD 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std
802.11ae™-2012 and IEEE Std 802.11a™-2012). “Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. Amendment 4: Enhancements for
Very High Throughput Operation in Bands below 6 GHz.” IEEE Standard for Information
technology — Telecommunications and information exchange between systems. Local and
metropolitan area networks — Specific requirements.

[6] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd Edition.
United Kingdom: Cambridge University Press, 2013.

See Also

Related Examples
• “Create Configuration Objects” on page 2-2
• “Waveform Generation” on page 2-14
• “WLAN Channel Models” on page 2-28
• “Packet Recovery” on page 2-38
• “WLAN PPDU Structure”

 What Is WLAN?

3-7

External Websites
• https://standards.ieee.org/

3 About WLAN

3-8

https://standards.ieee.org/

WLAN Radio Frequency Channels
WLAN operates in unlicensed radio frequency (RF) spectrum allocated by governing bodies in
individual countries for signal transmissions. Appropriate regulatory bodies specify maximum
allowable output power.

Refer to IEEE Std 802.11-2016, Annex E for detailed description of country information, operating
classes, and behavior limits. The discussion here is restricted to identification of the WLAN operating
frequency channel designations.

In general, the 2.4 GHz and 5 GHz bands of operation designate channels spaced 5 MHz apart, with
noted exceptions. As an example, the 2.4 GHz band designates channels 1 through 13 spaced 5 MHz
apart plus a 14th channel 12 MHz from channel 13. Defined WLAN channel bandwidths are greater
than 5 MHz, therefore cross-channel interference limits the number of designated usable channels.
Access point deployments manage interference from neighboring cells by operating on non-
overlapping channels. In the United States, the 2.4 GHz band designated usable non-overlapping
channels are 1, 6, and 11.

The channel center frequency, FCENTER, is calculated using the starting frequency, FSTART, and the
channel number.

FCENTER in MHz = FSTART + (5×Channel Number)

Example: Determine the center frequency for channel number 6 in the 2.4 GHz band.

FCENTER in MHz = 2407 + (5×6) = 2437 MHz.

802.11 channels
Channel Number FSTART, Starting Frequency Comments
1, ..., 13 2407 MHz For country- and release-

specific restrictions, refer to [1]14 2414 MHz
132, 133, 134, 136, 137, 138 3000 MHz
131, ..., 138 3002.5 MHz
183, ..., 197 4000 MHz
182, ..., 189 4002.5 MHz
21, 25 4850 MHz
11, 13, 15, 17, 19 4890 MHz
1, ..., 10 4937.5 MHz

 WLAN Radio Frequency Channels

3-9

802.11 channels
Channel Number FSTART, Starting Frequency Comments
7, ..., 12, 16

34, ..., 60 in increments of 2

64

100, 104, 106, 108

112, 114, 116

120, 122, 124, 128

132, 136, 138

140, 144, 149

153, 155, 157

161, 165, 169

171, ..., 184 in increments of 1

5000 MHz

6, ..., 11

170, ..., 184 in increments of 1

5002.5 MHz

1, 2, 3, 4 56.16 GHz

References
[1] IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012). “Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standard for
Information technology — Telecommunications and information exchange between systems.
Local and metropolitan area networks — Specific requirements.

[2] IEEE P802.11ax/D4.1. “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications. Amendment 1: Enhancements for High Efficiency WLAN.” Draft
Standard for Information technology — Telecommunications and information exchange
between systems. Local and metropolitan area networks — Specific requirements.

3 About WLAN

3-10

Acknowledgments
This table lists the copyright owners of content used in the WLAN Toolbox documentation.

Source Copyright Owner
Content from IEEE Std
802.11-2016

Adapted and reprinted with permission from IEEE. Copyright
IEEE 2016. All rights reserved.

Content from IEEE Std
802.11ah-2016

Adapted and reprinted with permission from IEEE. Copyright
IEEE 2016. All rights reserved.

 Acknowledgments

3-11

	Introduction
	WLAN Toolbox Product Description

	Tutorials
	Create Configuration Objects
	Create HE MU Configuration Object
	Create Single User HE Configuration Object
	Create DMG Configuration Object
	Create S1G Configuration Object
	Create VHT Configuration Object
	Create HT Configuration Object
	Create Non-HT Configuration Object

	Waveform Generation
	Generate WLAN Waveforms
	Waveforms of Individual PPDU Fields

	Generate and Parse WLAN MAC Frames
	WLAN Channel Models
	Packet Recovery
	VHT Packet Recovery
	HT Packet Recovery
	Non-HT Packet Recovery

	About WLAN
	What Is WLAN?
	Network Architecture
	WLAN Protocol Stack
	WLAN Message Exchange
	Physical Layer Evolution

	WLAN Radio Frequency Channels
	Acknowledgments

